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ABSTRACT 

Modelling range dependent sound propagation over layered elastic seafloors with high shear speeds has proved 
to be a difficult problem for many widely used under water acoustic sound propagation models.  Recent research 
and numerical developments have shown that it is possible to obtain accurate results for these types of range 
dependent environments, however these numerical methods are not as yet available for general use.  This article 
explores the appropriateness of using an equivalent fluid approximation to represent the reflection phenomena 
associated with a layered elastic seafloor.  The focus is on layered calcareous seafloors that are typical of the 
Australian continental shelf.  A complex density approximation is used to best match a fluid plane-wave reflection 
coefficient to an elastic plane-wave refection coefficient in order to determine the equivalent fluid bottom param-
eters.  Synthetic signals are computed using Fourier synthesis to compare reflection from the equivalent fluid 
bottom and the original elastic bottom.  The sound exposure level and peak pressure level, commonly used for 
practical purposes, are computed from these synthetic signals to assess the accuracy of the equivalent fluid ap-
proximation.  

1 INTRODUCTION 
 

In shallow water environments, acoustic signals interact strongly with the seafloor, therefore the type of seafloor 
sediments can have a significant effect on the sound field in the water column.  Unconsolidated sediments are 
commonly described as a fluid material and solid rock is described as an elastic material (Hamilton, 1980, 
Hamilton, 1982).  In Australia large portions of the continental shelf and upper slope are characterised by small 
amounts of unconsolidated sediments that overlay cemented and semi-cemented sedimentary layers (Bird, 1979, 
James and Bone, 2011).  These seabeds predominantly consist of cemented calcareous material and are gener-
ally referred to as a calcarenite (Duncan et al., 2009).  
 
Difficulties arise in modelling acoustic propagation over calcarenite seabeds in range dependent environments.  
Acoustic propagation models based on the Parabolic Equation method have been widely used for shallow water 
range dependent propagation modelling.  The RAM (Range dependent Acoustic Model) family of propagation 
models are a robust and widely used implementation of the parabolic equation method.  Two variants exist that 
are appropriate for layered fluid, RAMGeo (Collins, 1993b) and layered solid seabeds RAMSGeo (Collins, 1993a).  
However, RAMSGeo has been observed to produce unrealistic results when thin layers are present (Milinazzo et 
al., 1997, Duncan and McCauly, 2008).  There are new PE models that are capable of modelling propagation over 
seafloors with thin elastic layers however they are not as of yet available for general use (Collis and M. Metzler, 
2014).  The aim here is to investigate the use of an equivalent fluid approximation such that it may be used with 
a fluid only parabolic equation algorithm, such as RAMGeo, for modelling acoustic propagation in range depend-
ent shallow water environments with layered calcarenite seabeds.  

 

2 THEORY 

2.1 PLANE-WAVE AND EQUIVALENT FLUID REFLECTION COEFFICIENT 
Considering a planar interface between two different media and an incident propagating acoustic wave, the plane-
wave reflection coefficient (Jensen et al., 2011, Hovem, 2012), 𝑅 is defined as, 

𝑅 =
𝐴+

𝐴− (1) 

which is the ratio of upward reflected waves 𝐴+ to downward incident waves 𝐴−.  
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For two different fluid media with different densities and sound speeds the reflection coefficient is defined as, 

𝑅(𝑘𝑟) =
𝜌2𝛾1−𝜌1𝛾2

𝜌2𝛾1+𝜌1𝛾2
  (2) 

where 𝜌1 and 𝜌2 are the densities in the upper and lower media respectively and 𝛾1 and 𝛾2 are the vertical wave-

numbers of waves in the upper and lower media and 𝑘𝑟 is the horizontal wavenumber.  The sound speed in each 
medium is related to the vertical wavenumber through the wavenumber, which is given by 

𝑘 =
𝜔

𝑐
  (3) 

where 𝜔 is the angular frequency, 𝑐 is the wave speed.  The wavenumber 𝑘 is related to 𝛾 by 

𝑘2  = 𝛾2 + 𝑘𝑟
2. (4) 

When the lower medium is an elastic material the reflection coefficient (Brekhovskikh, 1960) can be written as, 

𝑅(𝑘𝑟) =
𝜌2𝛾1𝑃(𝑘𝑟)−𝜌1𝛾𝑝,2

𝜌2𝛾1𝑃(𝑘𝑟)+𝜌1𝛾𝑝,2
 (5) 

where the factor 𝑃(𝑘𝑟) is, 

𝑃(𝑘𝑟) = (1 −
2𝑘𝑟

2 

𝑘𝑠
2  )

2

+
4𝛾𝑝,2𝛾𝑠,2𝑘𝑟

2

𝑘𝑠
4  (6) 

The subscripts p and s denote quantities related to compressional and shear waves in the elastic bottom.  The 
reflection coefficient can also be written as a function of grazing angle 𝜃 by using the following transformation, 

𝑅(𝑘𝑟) → 𝑅(𝜃)     where     cos(𝜃) =
𝑘1

𝑘𝑟
 (7) 

here 𝑘1 is the wavenumber in the upper medium. 
 
These reflection coefficient formulae are valid for reflection from a fluid halfspace (Equation 2) or an elastic half-
space (Equation 5).  They are not appropriate for a layered structure of either fluid and/or elastic material.  
 
Computing the reflection coefficient in a fluid from a stack of elastic layers is generally more difficult than for a 
stack of fluid layers.  An excellent reference that discusses the computation of a reflection coefficient from a 
layered elastic seabed can be found in Westwood et al. (1996).  In the results section (Section 4) the reflection 
coefficient model BOUNCE (Porter, 2007) was used to compute the reflection coefficient from a stack of solid 
layers in the seabed.  Since we are concerned with equivalent fluid approximations we only present a reflection 
coefficient formula for layered isovelocity fluid media.  For a stack of fluid layers the reflection coefficient at the 
top of the stack can be computed using a recursive formula (Jensen et al., 2011, Hovem, 2012).  For an M number 
layered of media, where M is the lower most halfspace, the m-1th fluid reflection coefficient (Hovem, 2012) can be 
written as, 

ℛ𝑚−1 =
𝑅𝑚−1 +ℛ𝑚𝑒2𝑖𝛾𝑚ℎ𝑚

1+𝑅𝑚−1 ℛ𝑚𝑒2𝑖𝛾𝑚ℎ𝑚
    where     𝑚 = M − 1, … ,2, 1 (8) 

where the ℛ𝑚−1 denotes the total reflection coefficient at an interface.  The 𝑅𝑚−1  reflection coefficient denotes 
the local reflection coefficient at an interface between m-1th and mth layers which can be calculated using Equation 
2, 𝛾𝑚 is the vertical wavenumber in a layer and ℎ𝑚 is the layer thickness.  This algorithm is commonly known as 
the invariant embedding method (Jensen et al., 2011, Hovem, 2012).  It is implemented by moving upward from 
the bottom interface through each layer until the last interface.  It is possible to specify a fluid-elastic reflection 
coefficient for the bottom interface using Equation 5. 

 

3 DETERMINING EQUIVALENT FLUID BOTTOM PARAMETERS 

There are several methods for approximating a solid seafloor as an equivalent fluid (Tindle and Zhang, 1992, 
Zhang and Tindle, 1995).  When the shear wave speed is larger than the sound speed in water, like the case of 
solid basalt or granite rock (Hamilton, 1980, Hamilton, 1982), the solid reflection coefficient can be approximated 
by a fluid reflection coefficient where the shear wave speed of the solid is set as the acoustic wave speed of the 
equivalent fluid (Jensen et al., 2011).  A more challenging scenario is when shear wave speed in less than the 
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sound speed in water.  For low shear speed seabeds, the complex density equivalent fluid method has been 
proposed to approximate the solid reflection coefficient with a fluid reflection coefficient (Zhang and Tindle, 1995).  
Zhang and Tindle (1995) provide an explicit formula for this method, which involves converting the density to a 
complex quantity, assuming small grazing angles.  The approximation begins to break down at shear speeds 
greater than 500 m/s.  Furthermore, layers are not considered in their approximation.   
 
A slightly different implementation of the complex density method to model the reflection from a layered calcarenite 
seabed is used here.  The procedure to approximate a layered elastic seabed with an equivalent complex density 
fluid is as follows. 

• Beginning with the top layer, the elastic reflection coefficient at the seafloor is computed using 
Equation 5 and treating the seabed as a halfspace with the acoustic properties of the top layer. 

• Considering a range of trial values of complex density, the root mean square (RMS) difference be-
tween the reflection coefficient curves of the equivalent fluid and the elastic solid is computed.  The 
parameters that yield the smallest RMS difference become the parameters of the equivalent fluid for 
the first layer. 

• For the subsequent layers, Equation 8 is used to compute the total reflection coefficient through 
each equivalent layer to the next equivalent fluid elastic interface until the last interface is reached.  
The RMS difference is computed at each layer to identify the complex density for each layer. In this 
way the elastic stack is replaced with a fluid stack of layers. 

• When multiple frequencies are considered the smallest RMS value over the relevant frequency 
range is used to determine the complex density in each layer.  The algorithm then moves to the 
next layer. 

4 Results  

Table 1 shows the geoacoustic parameters that were used to test this implementation of the equivalent fluid 
complex density approximation.  The seabed consists of a 1 metre thick layer of sandy material followed by a 
cemented calcarenite layer and an acoustic basement that is representative of a well-cemented sedimentary rock.  
The geoacoustic parameters are nominal values and are generally representative these types of rock (Duncan et 
al., 2009).  However, in the real sea bottoms the layered structure of the seabed is likely to be much more complex 
than the simple test model considered here.  It should be noted that there are other relatively unique seabed 
configurations, such as a thin cap rock layer (Duncan et al., 2013), that have not been considered here and are 
left for future analysis. 

 

Table 1. Geoacoustic parameters for a test senario   

Layer 
Thickness 

[m] 
ρ 

[g/cm3] 
cp 

[m/s] 
cs 

[m/s] 
αp 

[dB/λ] 
αs 

[dB/λ] 

 Thin Sand Layer – Calcarenite Bottom – Sedimentary Basement 

Water N/A 1 1500 0.0 0.0 0.0 
Thin Sand Layer 1 1.9 1700 0.0 0.7 0.0 

Cemented Calcarenite 600 2.2 2600 1200 0.1 0.2 
Sedimentary Basement N/A 2.4 3200 1700 0.1 0.2 

 
Table 2 presents the complex density values that were found for each layer over a frequency range of 2 Hertz to 
100 Hertz.  Figure 1 also shows the reflection coefficient obtained from the BOUNCE program compared to the 
equivalent fluid reflection coefficient. 

 

Table 2. The equivalent fluid complex density parameters used for for the test senario   

Layer 
ρ 

[g/cm3] 

Thin Sand Layer 1.9 + 0.0i 
Cemented Calcarenite 1.1 + 1.5i 
Sedimentary Basement 3.0 + 1.5i 
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Figure 1:  Comparison of the magnitudes of the reflection coefficients of the layered elastic seabed (red) 
and equivalent fluid seabed (blue) at a frequency of 20 Hertz. 

 
Figure 2 shows a colour plot comparing the magnitudes of the elastic reflection coefficient and the equivalent fluid 
reflection coefficient over a range of frequencies from 2 Hertz to 100 Hertz. 

 

 

Figure 2:  The magnitude of the reflection coefficient over a range of grazing angles and frequencies.  Top 
panel: Magnitude of the reflection coefficient from equivalent fluid layers. Bottom panel: The magnitude of the 

reflection coefficient from elastic layers 

The two reflection coefficients do not agree completely but there are features that the equivalent fluid approxi-
mates reasonably well.  The critical angle is preserved in the equivalent fluid reflection coefficient and the magni-
tudes near critical angles are comparable between the elastic and fluid reflection coefficients.  The critical grazing 
angle associated with the cemented calcarenite layer considered in Table 1 is 54.8°.  For a calcarenite seabed 
the critical angle is important because a significant amount of energy can propagate in the water column as normal 
modes at reflected angles near the critical angle (Duncan et al., 2009).  The decrease in magnitude of the two 
reflection coefficients up to the critical angle generally follows the same trend.  However, the magnitude is larger 
for the equivalent fluid bottom for angles greater than the critical angle.  An effect that is not reproduced in the 
equivalent fluid model is the frequency dependent ripples between zero degrees and the critical angle.  In the 
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elastic reflection coefficient these are produced by shear waves that reflect off the bottom interface (Ainslie, 1995) 
and cannot be reproduced in an equivalent fluid approximation.   
 
To test how well these approximations perform for practical applications, sample waveforms were compute with 
Fourier synthesis (Jensen et al., 2011) at different reflection angles from the elastic seabed and the equivalent 
fluid seabed.  The incident waveform and resultant reflected waveforms are shown in Figure 3 below.  The top 
left panel shows the incident waveform and is defined by Equation 9 below, 

𝑠(𝑡) = {
sin(2𝜋𝑓𝑐(𝑡 − 𝜏)) −

1

2
sin(4𝜋𝑓𝑐(𝑡 − 𝜏)),                   0 < 𝑡 <

1

𝑓𝑐

0,                                                                                          otherwise
 (9) 

where 𝑓𝑐 = 20 𝐻𝑧 and 𝜏 = 0.05 𝑠.  This incident waveform is similar to impulsive signals that are encountered in 
underwater acoustics.   

 

 

Figure 3: (Top Left Panel) Incident waveform for reflection analysis. (Other Panels): Fourier synthesized re-
flected waveforms from an elastic seabed (red curve) and from a complex density equivalent fluid seabed (blue 

curve); the grazing angle is noted on top of each panel. 
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The initial reflected waveforms are in reasonable agreement at grazing angles near the critical angle where these 
pulses have roughly the same magnitude and phase.  The agreement is less robust for low grazing angles.  No-
tably, there are multiple arrivals after the initial reflection in the signal from the elastic seabed.  It is these arrivals 
that are associated with shear wave reflections within the elastic layers that cannot be modelled by an equivalent 
fluid.  
 
From these waveforms the sound exposure level (SEL) and peak pressure level (SPLpeak) (Carey, 2006) were 
computed to assess the relative performance of the implementation complex density equivalent fluid approxima-
tion.  Figure 4 shows the results over all grazing angles at 1° increments.  

 

 

Figure 4 (Top Panel):  Sound Exposure Level (SEL) from the reflected waveforms from an elastic seabed 
(red curve) and from a complex density equivalent fluid seabed (blue curve). (Bottom Panel):  Peak pressure 
level (SPLpeak) from the reflected waveforms from an elastic seabed (red curve) and from a complex density 

equivalent fluid seabed (blue curve). 

 
The major differences between the curves for the two environments, for both metrics are between the grazing 
angles of 15° and 50°, where the SEL and SPLpeak from the elastic seabed are generally lower than from the 
equivalent fluid seabed.  The SEL which, is a measure of the energy of a signal, generally agrees better than the 
SPLpeak when comparing the two treatments of the seafloor.  This comparison highlights the effect that thick elastic 
layers can have on reflected signals.   
 
For grazing angles greater than the critical angle the equivalent fluid bottom will likely produce higher SEL and 
SPLpeak predictions when used with a propagation model.  For grazing angles in-between zero and the critical 
angle there are large differences between the two reflection coefficients due to shear wave reflections, however 
the magnitude of the reflection coefficient is small at these angles (|R|< 0.5).  After repeated reflections from the 
seafloor at these angles a signal will have lost a large portion of its initial amplitude and after several seabed 
interactions so the contribution of reflection to the total sound field at these angles should decrease rapidly away 
from the source.  The confirmation of this is left to future work.  In contrast, reflection near the critical angle is very 
important for predicting the energy of a signal propagating over a calcarenite seabed (Duncan et al., 2009, Duncan 
et al., 2013); particularly, because |R|≈ 1 which allows minimal loss upon each interaction with the seabed.  Based 
on the results above the equivalent fluid complex density approximation might approximate propagation close to 
the critical angle reasonable well when used with a propagation model.  Some implementations of the complex 
density approximation with parabolic equation models do exist (Smith, 2001, MacGillivary, 2006) but they appear 
to be based on the low grazing angle approximations of Zhang and Tindle (1995).  An alternative approach might 
be to determine the complex densities in the manner discussed above then specify them as input parameters for 
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a propagation model through its input file.  The source code of any given propagation model would have to be 
modified to do this. 

 

5 CONCLUSIONS 

The complex density approximation was applied to a layered elastic seabed scenario.  Reasonable results were 
obtained by matching the reflection coefficient between an equivalent fluid seabed and elastic seabed at each 
layer.  For calcarenite style seabeds the equivalent fluid complex density approximation preserved the amplitude 
and phase near the critical angle of a reflected wave when compared to the original elastic seabed.  It did not to 
correctly approximate the return of energy from shear wave reflections in the seabed at grazing angles below the 
critical angle.  This implementation of the complex density equivalent fluid approximation may have applicability 
to far-field range-dependent modelling of propagation over calcarenite seabeds with parabolic equation methods.  
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